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Why Integral Bridges

* No bearings to replace —
lower life costs

« Limited spans and skews
 Not “allowed” in seismic areas

 How do we expand the scope
and reduce the cost of integral
bridges?

 Longer spans

« Larger skews

« High speed rail interactions
« Seismic situations

bristol.ac.uk



Critical design aspects - temperature
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al, 2007)



Integral Bridges in codes
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Figure 4. Earth pressure distibutions for abutments that can
accommodate thermal expansion by rotation and/or flexure (from BSI,
2011), where K; is the coeffident of earth pressure at rest; H is the
vertical distance from the ground level to the level at which the
abutment is assumed to rotate; yis unit soil weight; z is the sail depth;
and K* is the design value of the earth pressure coeffident for
expansion
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Design
guidance Region

Aashto USA
(2012)

Barker
etal.
(1991)

Navfac
(1982)

Navfac
(1982)
MassDOT
(1999)

CGS Canada
(1978)

BSI(2011) UK

Table 1. Summary information of design guidance

Estimation of earth pressures Limiting design criteria

The limiting design criterion varies in different states. In 1980,
American Federal Highway Association recommended the
following: steel bridge, 90 m; cast-in-place concrete bridge,
150m; and post-tensioned bridges, 183 m.

The earth pressure coefficient variations are a function of
structural displacement from experimental data and finite-
element analyses, leading to a quasilinear relationship

Limit equilibrium solutions based on log spiral failure
mechanisms for standard backfill configurations (loose,
medium and dense sand)

Limit equilibrium solutions based on log spiral failure
mechanisms for standard backfill configurations (loose and
dense sand)

Terzaghi's log spiral wedge theory to determine passive soil
pressure coefficient”

Provided the equations (according to full-scale wall tests) to
calculate the design earth pressure distribution behind the
abutment of I1ABs

The soil pressure coefficients are based on the thermal
movement of the model, varying with abutment rotation

Different provinces have their own design guidance. For
example, Alberta limited the span of IABs to 100m, with the
skew angle less than 20°. Ontario limited the height of the
abutment to 7 m and the length of the wingwall to 6 m.

Span length, 60 m; skew, 30°; the characteristic thermal
movement of the end of the deck is less than or equal to
40 mm.

Limit equilibrium approach and SSI analysis

 The log spiral theory was developed long before Terzaghi

Note that limit equilibrium methods cannot predict distributions of soil pressures with depth; hence, additional assumptions are needed to predict shear forces and
bending moments along the wall

CGS, Canadian Geotechnical Society, |ABs, integral abutment bridges; MassDOT, Massachusetts Department of Transportation; Navfac, Naval Facilities Engineering

Systems Command



Integral Bridges monitored

Table 2. Summary information of monitored integral abutment bridges

Span o Height of
Reference Location length: m Skew: I m Key monitoring findings
Barker and Manchester, UK 40 0 7 In the first 2 years of service, the measured lateral stresses increased
Carder
(2000)
Barker and North Yorkshire, 50 Skewed 9 In the first 3 years of service, the measured lateral earth pressures
Carder (2001) UK increased slightly for each of the following summers
Hassiotis et al. Trenton, NJ, USA 909 15 288 A steady build-up of soil pressures behind the abutment was
(2005) observed
Brena et al. Millers River, USA 823 0 3.05 The peak earth pressure at 2.5 m from the abutment top was
(2007) observed to increase annually
Skorpen et al. Van Zylspruit 90.45 0 6.6 In the first of year of service, a maximum earth pressure significantly
(2018) River, South (~1.75 times) higher than the at-rest pressure
Africa
[ ]
IB S eXp e r lme nt S Table 3. Dimensions of available model tests
Aspect ratio Abutment Constraint
M h: Te Backfill material
lodel mm G0 wih th HH Uh material abutment
England 570 1g pseudo- 053 0.035* 1 2 Metal Leighton Buzzard Fixed-hinged
etal. static
(2000)
Springman  110/115.9 60g centrifuge 1.88/162 0.099/0.085 0.45/0.53 29725 Duralsteel Drysand Embedded/spread-
etal. base
(1996)
Cosgrave 1000 1g pseudo- 03 0.025 1 2.61 Mild steel  Dry siliceous sand Hinge
and static plate
Lehane
(2003)
Lehane 160200  (20.0,25.0, 0.8/1 0.1/0.08 0651 3.192.55 Aluminium Fine sand/glass  Hinge
(2011) 375, 40.0)g ballottini/high-
centrifuge OCR kaolin

.
b r I Sto | [ aC [ u k * Estimation from the diagram proposed in the paper

H, height; h, height; L, length of the backfill; OCR, overconsolidation ratio; t, thickness of the abutment; w, width



Plexus experimental campaign

Stiffness properties of moveable walls S1, S2 and S3.

Moveable/Abutment Wall ID Elastic modulus, E, (MPa) A (mm?) 1 (mm?) EI (N*mm?) p* = H*|EI(m® [kN) L, =H(E, /EI)“
S1 1000 5.00E + 04 1.05E + 07 1.05E + 10 809E-4 18.3E-10
S2 1100 1.00E + 05 8.30E + 07 9.13E + 10 93.0E-4 2.10E-10
S3 23,491 1.12E + 05 11.8E + 07 277E + 10 3.06E-4 0.07E-10

*Rowe [58]; **mechanical length considering SSI (e.g., [59], where E; = 20 MPa is the Elastic Modulus of the soil (see Table 5).
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. . Fig. 1. () Photo of experimental setup includi system; (b) section and size of the wall with 51, 52 and §3 stiffness; (c) location of pressure

cells on the end of the wall (1-3) and moveable wall (6-8) and LVDTs; (d) top view of the test box identifying LVDT positions.




Plexus experimental campaign
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Plexus experimental campaign
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Settlement measured by videos (mm)
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Plexus experimental campaign
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Plexus experimental campaign

0 0

T

<025 | I - T

L f1 VAL (2]

2 ' £ 5

2 <

= &

9 £

o at Rest - test#S2-C-5 g

< 05 @ 1st Cycle - test#S2-C-5 @

s ®2nd Cycle - test#S2-C-5 g —1st Cycle - Test #52-C-5

© ®3rd Cycle - test#S2-C-5 S —2nd Cycle - Test #52-C-5

5 ® 4th Cycle - test#S2-C-5 = 10 —3rd Cycle - Test #S2-C-5

= 5th Cycle - test#S2-C-52 8 —4th Cycle - Test #82-C-5

2075 at Rest - test#83-C-12 S 5th Cycle - Test #52-C-5

© £+1st Cycle - test#S3-C-5 > -~ 1st Cycle - Test #33-C-5

x £+2nd Cycle - test#S3-C-5 -- 2nd Cycle - Test #S3-C-5
£13rd Cycle - test#S3-C-5 -- 3rd Cycle - Test #53-C-5
£F4th Cycle - test#S3-C-5 4th Cycle - Test #S3-C-5

5th Cycle - test#S3-C-5 5th Cycle - Test #S3-C-5
10 2 4 6 8 10 12 14 16 18 150 0.2 0.4 0.6 0.8
Coefficient of lateral earth pressure: K Distance from moveable wall/Total soil width

bristol.ac.uk



Plexus experimental campaign

Analytical formulations for the estimation of K in IABs depending on
displacement.

A 'y

Bridge Manual, 1999[69]

d
K =043+ 57[1 ~¢’m‘§)]

d s eleli i
K =Ko + 28(§)°'” Dicleli & Albhaisi (2004) [70]

. o6 PD 6694-1[5]
K; =Ko + (Td) Ko
K =Ko+ @d<Kp

Where d is the displacement of the IB towards the backfill soil; H is the height of the
abutment; Ky is the at-rest earth pressure coefficient; dd is the wall deflection at depth
H/2 below ground level; C is a dimensionless coefficient equal to 20 for foundations
on loose soils with Young's modulus E < 100 MPa, and 66 for foundations on rock or
soils with E > 1000 MPa, and which may be determined by linear interpolation for
values of between 100 MPa and 1000 MPa; Ky, is the coefficient of passive earth
pressure used in the calculation of K; @ is the slope of the earth pressure variation
with horizontal displacement (which varies with backfill type); K, is the passive earth
pressure coefficient given by the Rankine theory equal to (1 —sing) /(1 +sing) where
¢ is the friction angle.

Bal et al., 2018[71]

bristol.ac.uk
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Plexus experimental campaign
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Plexus experimental campaign
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Plexus experimental campaign
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Plexus experimental campaign
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Plexus plus experimental campaign
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Plexus plus experimental campaign
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Plexus plus experimental campaign - %
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Plexus plus experimental campaign + E
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Plexus plus experimental campaign
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Depth of the backfill (m)
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Plexus plus experimental campaign
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Critical design aspects - seismic

= Lack of experimental studies on Integral Abutment Bridges (IABs)
= |nvestigation on IAB response with a shaking table including SSI
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SERENA experimental campaign

EQUALS-BLADE Earthquake Simulator: 3 x 3m cast aluminum platform
(3.8 tons maximum payload 15t operatlonal frequency 0O- 100Hz)50 .

horizontal actuators

' //////{//l — ’ B rphy agslta:fom
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Empty soil Soil container
container ready for
s testing
O Length: 4.8 m A
O Width: 1m e
Q Height: 1.2m &
Bridge
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SERENA experimental campaign

Abutment walls and footings: two 32
mm thick aluminum sheets

Bridge deck: four steel beams with L x
W x D =1000 x100 x 30 mm

L

3

/e ™ =
\ SN
L Footink\\

Q 16 aluminium hollow tubes were used as
piles (d =22 mm)

O Piles inserted at the base into a plywood
plate - vertical movements.

O Nylon plug at the top of each pile -
“Connected Piles” config.

bristol.ac.uk
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SERENA experimental campaign
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SERENA experimental campaign
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FIGURE 7 A, Frequency response for EPS2-CP in hammer tests, B, evolution of resonant frequency of all configurations determined
through white noise tests W1, W2, W3 and W4 as recorded by accelerometer 22
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SERENA experimental campaign
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FIGURE 13 A Maximum, and B, minimum pile bending strain on the East pile; C, maximum, and D, minimum pile bending strain on
the West pile to §7
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Final Remarks and Further Research

= Analytical tools for estimation of earth pressures in IABs are still
very conservative

= Field monitoring can address the first phases but not the all-life
span effects of SSI

= Experimental testing (even large scale) needs to account for scaling

= Some of the limitations, still present in codes, for IABs seem over
conservative and need experimental-evidence to be reviewed

= Geotechnical isolation and other mitigation strategies (if controlled)
can make a huge difference in terms of design
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