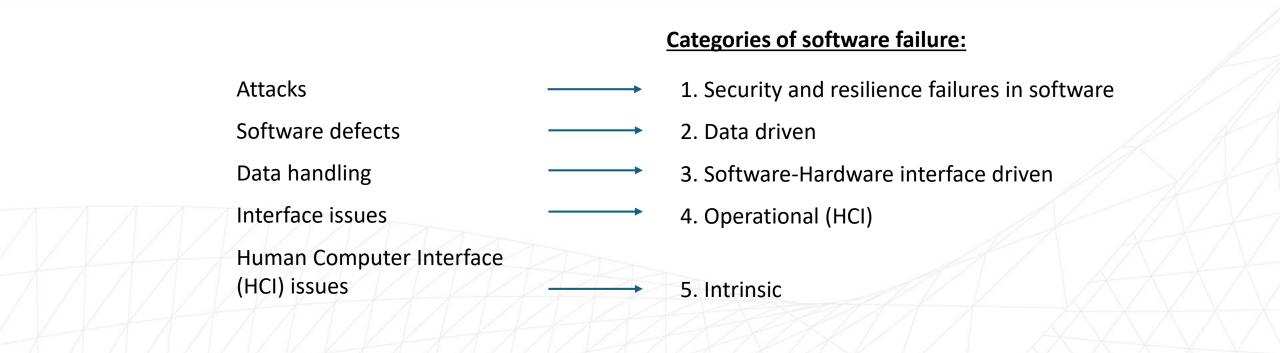


Characterising Software Failure and the Consequences of Software Failure for Critical National Infrastructure Resilience

CNI AND DIGITALISATION

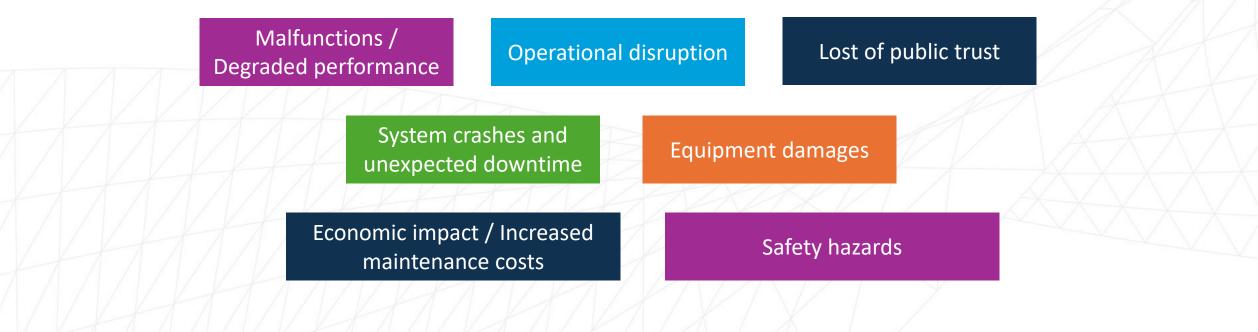


(+ other 9; 13 CNI sectors in the UK in total)

- CNI are "open complex interdependent systems" (UNDRR, 2022)
- Digitalisation
 - ✓ Remote access and better maintenance;
 Reduced costs and increased flexibility for operators
 - X Increased vulnerabilities (open door to threats from software failure)
- Roadmap to 2030 (IPA, 2021):
 - Use modern digital approaches and technologies
 - Digital-by-default infrastructure delivery \rightarrow Collaborative approach using digital technologies to improve productivity, efficiency and quality

TRIGGERS THAT LEAD TO SOFTWARE FAILURE

TRIGGERS THAT LEAD TO SOFTWARE FAILURE


Category	Sub-categories
Security and Resilience Failures	1.1. Adversarial attacks
	1.2. Ransomware attacks
	1.3. Environmental hazards
Intrinsic Software Failures	2.1. Demand defect / software requirements are incorrect
	2.2. Functional and performance defect
	2.3. Software structure defect
	2.4. Software implementation and coding defect
Data-Driven Failures	3.1. Data handling issues
	3.2. Data defect / quality
Software-Hardware Interface Failures	4.1. Internal and external interfaces are incorrect
	4.2. Lack of coordination between the interface
	4.3. I/O timing error (causing mis-match and duplicates)
Human-Computer Interface Failures	5.1. User interface defect
	5.2. Operator error

CONSEQUENCES AND IMPACT TO CNI

"a random failure [...] in a component of an interdependent system could cause cascading effects that can potentially collapse a component of or the entire system of interdependent CI"

(Palleti et al., 2021)

CASE STUDIES 1 – NATS Air traffic control failure

(BBC, 2023)

Date: 28th August 2023

Issue: Inability of the system software to successfully process the flight plan data for a specific flight

Trigger: Waypoints identifiers confusionDVL: 1) Devil's Lake, North Dakota, US;2) Deauville, France

Exception handling failure \rightarrow Intrinsic software failure

Degree of impact:

Over 700,000 passengers (+ others affected) → Considerable financial and emotional consequences for them

CASE STUDIES 2 – Attack on Colonial Pipeline

Date: 6th – 12th May 2021

Issue: Victim of a ransomware attack

Security and resilience

Degree of impact:

- Airline industry was affected due to jet fuel shortage
- Panic-buying from citizens
- Spike in average price
- Economic losses affecting various sectors reliant on fuel for transportation and operations
- Ransom payment (\$4.4 million in cryptocurrency)

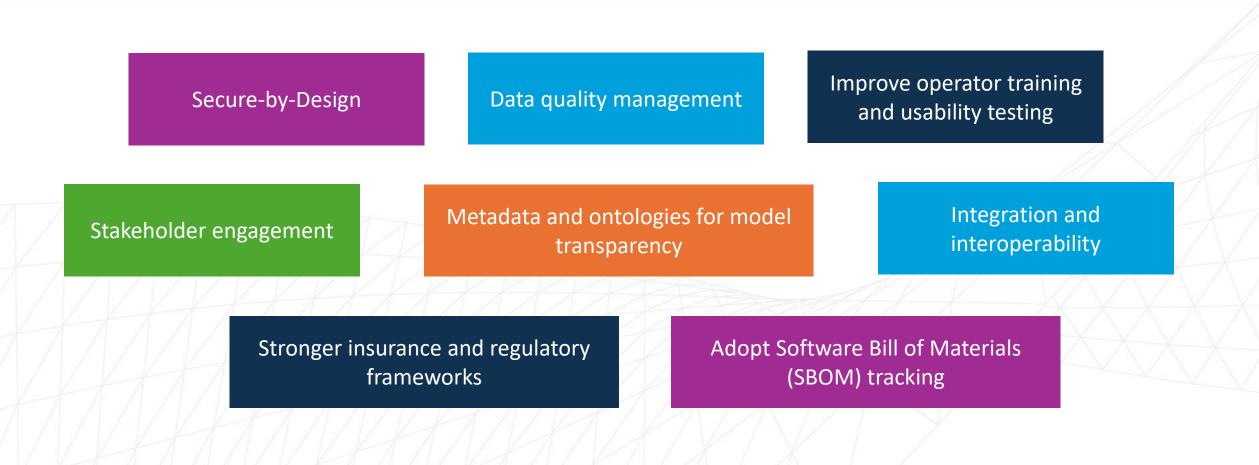
- Possible root cause: An exposed password for a VPN account allowed access from cyber-attackers
- Ransomware infected the IT network → multiple computer systems were affected

OTHER CASE STUDIES

UK Royal Mail (2023)

- Ransomware attack \rightarrow Disrupted international mail deliveries
- Vulnerabilities in logistics infrastructure → Urgency of software resilience in postal and supply chain industries

UK Railway Cyberattack (2024) • Cyber-vandalism → Compromised Wi-Fi networks at 19 UK railway stations


DISCUSSIONS WITH STAKEHOLDERS – KEY FINDINGS

Software vs. Service Resilience	Architecture & design vs. minimization of lost user hours & financial stability
Interconnected Systems	Digitalisation increases complexity & risk of cascading failures
Failure Impact	Small software defects can trigger major disruptions
User-Centric Approach	Stronger operator-user relationships improve resilience
Legacy Risks	Outdated software poses security threats & requires better governance
Cybersecurity and Engineering	Poor validation & design flaws weaken security
Data issues	Useful digital tools for failure detection (e.g., Digital Twins) but unreliable with incomplete data
Insurance and Regulation	Software lacks structured risk management; policy evolution needed

STRATEGIES FOR ENHANCING SOFTWARE RESILIENCE IN CNI

CONCLUSION

Building a Resilient Digital Future

- Software resilience is critical for CNI as digitalisation accelerates
- Key strategies:
 - ✓ Secure design
 - ✓ Strong data management and collaboration.
- Cybersecurity must evolve → High-profile failures highlight urgent action needed
- Future focus:
 - ✓ Advanced security frameworks
 - ✓ Rapid incident response
 - ✓ Cross-sector cooperation.

Key Takeaways

- 1) Detect failures early in highly-interdependent systems
- 2) Software Bill of Materials (SBOM) to identify vulnerabilities and support risk management
- 3) Regulations & insurance must adapt to software resilience needs